Introduction to Database
Systems

CSE 444

Lecture #12
Feb 14 2001

Announcements

$HW#2 due today
¥MidTerm will be returned next Wed

Nonquiescent
Checkpointing

38 Stop accepting any new update/commit/abort
RIMake a list of all dirty pages in the buffer
BEWrite a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all active transactions
&8 Start normal operation
EFlush unpinned dirty pages as a low-priority item
¥ When all of T1,..., Tk have completed, and their
dirty pages written out
Hwrite <END CKPT>

@ICannot start a <START CKPT...> until earlier <END
CKPT> is complete

Undo Recovery with
Nonquiescent Checkpointing

earlier transactions plus

During recovery, | T4,75,T6
Can stop at first
<START CKPT> <START CKPT T4, T5, T6>
. T4, T5, T6, plus
Q: What if no later transactions
<End CKPT> in <END CKPT>
thelog?

later transactions

4

Redo Logging

Log records

$<START T> = transaction T has begun
¥ <COMMIT T> = T has committed
$<ABORT T>= T has aborted

¥ <T,X,v>= T has updated element X, and
its new value is v

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to log
before X is written (flushed) to disk

Lazy write to disk — may need to “redo”
work during recovery

Action T MemA | MemB | Disk A Disk B Log
<START T>
REAT(A,t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A 16>
READ(B,t) 8 16 8 8 8
ti=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
<COMMIT T>
OUTPUT(A) | 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Recovery with Redo Log

After system's crash, run recovery manager

38Step 1. Decide for each transaction T
whether it is completed or not

R<START T>....<COMMIT T>.... =yes
R<START T>....<ABORT T>....... = yes
EI<START T>..oooviieeeiieieene =no

38Step 2. Read log from the beginning, redo
all updates of committed transactions

Recovery using Redo Log

$8For committed transactions
&Replay Write() for the log record <T,X,v>
#For each incomplete transaction T
RWrite <Abort T> to log
8 Follow Example 8.8

Example: Recovery with
Redo Log

<START T1>
<T1,X1v1l>
<START T2>
<T2,X2,v2>
<START T3>
<T1,X3v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5v5>

Nonquiescent
Checkpointing

$Write a <START CKPT(T1,..., Tk)>
where T1,..., Tk are all active transactions

$8Flush to disk all blocks of committed
transactions (dirty blocks), while
continuing normal operation

#¥When all blocks have been written, write
<END CKPT>

Redo Recovery with
Nonquiescent Checkpointing

<START T1>

Step 1: look for <CoMMITTL> Step 2: redo
Thelast - from there,
<END CK PT> <START CKPT T4, T5, T6> Ignorl ng
transactions
committed
All OUTPUTs <END CKPT> earlier

of Tlare
known to be on disk

<START CKPT T9, T10>

Comparison Undo/Redo

#Undo logging:
HOUTPUT must be done early
HIf <COMMIT T> is seen, T definitely has
written all its data to disk
¥Redo logging
BIOUTPUT must be done late

|IIf <COMMIT T> is not seen, T definitely has
not written any of its data to disk

Undo/Redo Logging

#Log Record: <T,X,u,v>= T has updated
element X, its o/d value was u, and its
newvalue is v

BRule: If T modifies X, then the log record
<T,X,u,v> must be written to disk before
X is written to disk

Action T MemA | MemB | Disk A Disk B Log
<START T>
REAT(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A8,16>
READ(B,t) 8 16 8 8 8
ti=t*2 16 16 8 8 8
WRITE(B, t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Recovery with Undo/Redo
Log

After system’s crash, run recovery manager

¥ Redo all committed transaction beginning at last
checkpoint

#Undo all uncommitted transactions, until last
checkpoint

Recovery with Redo Log

<START T1>
<T1X1vi>
<START T2>
<T2, X2,v2>
<START T3>
<T1,X3v3>
<COMMIT T2>
<T3,X4,\v4>
<T1,X5v5>

Media Failure

¥Redundancy is the key
IShadowed Disk/RAID either for database or
at least for the log
ECannot afford to lose part of a log!

XIOnly place which has before-image (after-image)
of uncommitted data written (not written) to disk

[#IMinimize shared hardware
38Using Archive

Archive: Fuzzy Dump

3 <Begin Dump>

¥ <Start Ckpt (T1, T2)>
¥<TL, A 1,5>
¥<T2,C, 3, 6>
$8<T1,B, 2, 7>

3 <Commit T2>

3 <End Ckpt>

3 <End Dump>

Archive: Pragmatics

¥ Usually a separate media recovery log
38 Disk Contention
IMedia Log Archiver read from the head
ALog is apepnd-only
3 Use two pairs of shadowed log disks
3 Avoid keeping undo information in media
recovery log
A Archive only when their entire content is committed
AUse write-lock on pages

Summary

3 Checkpointing: A quick way to limit the amount
of log to scan on recovery.

8 Recovery works in 3 phases:
HAnalysis: Forward from checkpoint.
&IRedo: Forward from checkpoint.
EAUndo: Backward until checkpoint

3 Tolerating media Failure requires more
redundancy

¥ Many more optimizations in real system

Storage

Reading: Chapter 3, 4

Memory Hierarchy

¥ Typical storage hierarchy:
&®IMain memory (RAM) for currently used data.
HIDisk for the main database (secondary storage).
R Tapes for archiving older versions of the data (tertiary
storage).
#This has major implications for DBMS design!

NIREAD: transfer data from disk to main memory (RAM).

RIWRITE: transfer data from RAM to disk.

[ABoth are high-cost operations, relative to in-memory
operations, so must be planned carefully!

Disks

¥ Secondary storage device of choice.

3 Main advantage over tapes: random access
vs. sequential.

¥ Data is stored and retrieved in units called
disk blocks or pages.

Unlike RAM, time to retrieve a disk page
varies depending upon location on disk.

HTherefore, relative placement of pages on disk
has major impact on DBMS performance!

Components of a Disk

Disk head
The platters spin (say, 100rps).
The arm assembly is moved
in or out to position a head
on a desired track. Tracks
under heads make a
cylinder (imaginary!). ()

Arm movement

Spindle
Tracks.

Platters

Only one head
reads/writes at any
one time.

L. . Arm assembly
< Block size is a multiple
of sector size (which is fixed).

/_;eclor

Accessing a Disk Page

¥ Time to access (read/write) a disk block:
[Alseek time (moving arms to position disk head on track)
& rotational delay (waiting for block to rotate under head)

Xloften called “rotational latency”

transfer time (actually moving data to/from disk surface)

38 Seek time and rotational delay dominate.
[RISeek time varies from about 1 to 20msec
[ARotational delay varies from 0 to 10msec
RTransfer rate is about 1msec per 4KB page

¥ Key to lower I/O cost: reduce seek/rotation
delays! Hardware vs. software solutions?

Arranging Pages on Disk

38" Next' block concept:
&Iblocks on same track, followed by
Eblocks on same cylinder, followed by
Ablocks on adjacent cylinder

3 Blocks in a file should be arranged
sequentially on disk (by “next’), to minimize
seek and rotational delay.

3 For a sequential scan, pre-fetching several
pages at a time is a big win!

Disk Space Management

¥ Lowest layer of DBMS software manages space
on disk.
3 Higher levels call upon this layer to:
Hallocate/de-allocate a page
Hread/write a page
3 0ne such “higher level” is the buffer manager,
which receives a request to bring a page into
memory and then, if needed, requests the disk
space layer to read the page into the buffer
pool.

Buffer Management in a
DBMS

Page Requests from Higher Levels

BUFFER POOL

disk page

free frame

MAIN MEMORY

—_——
DISK choice of frame dictated
m by replacement policy
——
38 |Table of <frame#, pageid> pairs is
maintained.

Files of Records

¥ Page or block is OK when doing 1/0, but higher
levels of DBMS operate on records, and files of
records.
¥ FILE: A collection of pages, each containing a
collection of records. Must support:
Hinsert/delete/modify record
Hread a particular record (specified using record ia)

&scan all records (possibly with some conditions on
the records to be retrieved)

Record Formats: Fixed
Length

F1 F2 F3 F4
Huﬁ{ L2 ‘ L3 ‘L4 ‘
\ \

Base address (B) Address = B+L1+L2

¥ Information about field types same for all
records in a file; stored in system catalogs.

#Finding /%A field requires scan of record.

¥ Note the importance of schema
information!

Record Header

To schema
length
1 ot F1 F2 F3 Fa
H‘}«;ng.{ L2 ‘ L3 ‘L4‘
header |
timestamp
Need the header because:
*The schemamay change

for awhile new+old may coexist
*Records from different relations may coexist

Variable Length Records
Other header information
header F1 F2
‘ F—Ll—»{ L2 L3 ‘LA ‘
i I

length

Placethefixed fidldsfirst: F1, F2

Then the variable length fields: F3, F4

Null values take 2 bytes only

Sometimes they take 0 bytes (when at the end)

Storing Records in Blocks

#Blocks have fixed size (typically 4k)

BLOCK

R4 R3 R2 R1

Spanning Records Across
Blocks

block block
header header
R1 R2 R2 R3

¥ When records are very large
3 0r even medium size: saves space in blocks

Modifications: Insertion

38File is unsorted: add it to the end (easy
©)
FFile is sorted:
HIs there space in the right block ?
XlYes: we are lucky, store it there
AIs there space in a neighboring block ?
XILook 1-2 blocks to the left/right, shift records
HIf anything else fails, create overflow block

Overflow Blocks

Block,, ; Block, Block

n+l

Overflow

38 After a while the file starts being dominated by
overflow blocks: time to reorganize

Modifications: Deletions

38 Free space in block, shift records

Maybe be able to eliminate an overflow
block

3Can never really eliminate the record,
because others may point to it
IPlace a tombstone instead (a NULL record)

Modifications: Updates

BIf new record is shorter than previous,
easy ©

3If it is longer, need to shift records,
create overflow blocks

Physical Addresses

8 Each block and each record have a physical
address that consists of:
R The host
AThe disk
AThe cylinder number
EThe track number
HThe block within the track

HFor records: an offset in the block
XIsometimes this is in the block’s header

40

Logical Addresses

38Logical address: a string of bytes (10-16)
¥More flexible: can blocks/records around
FBut need translation table:

Main Memory Address

#¥When the block is read in main memory,
it receives a main memory address

¥ Need another translation table

Logical address | Physical address
L1 P1
L2 P2
L3 P3

41

Memory address | Logical address
M1 L1
M2 L2
M3 L3

42

Optimization: Pointer
Swizzling

3= the process of replacing a
physical/logical pointer with a main
memory pointer

38Still need translation table, but
subsequent references are faster

43

Indexes

¥ An /ndex on a file speeds up selections on the
search key fields for the index.

BAny subset of the fields of a relation can be the
search key for an index on the relation.

R Search key is not the same as key (minimal set of
fields that uniquely identify a record in a relation).
3 An index contains a collection of data entries,
and supports efficient retrieval of all data
entries with a given key value k.

Index Classification

#Primary/secondary
#8Clustered/unclustered
¥Dense/sparse

B+ tree / Hash table / ...

45

Primary Index

¥File is sorted on the index attribute

3 Dense index: sequence of (key,pointer)
pairs

w0 | —}

30 | —
0 | —

~ @ w|[x]=
S 3 sll|s|a

46

Primary Index

¥ .Sparse index

N INE
3(slls|e

N
S| 8|38

47

Primary Index with
Duplicate Keys

¥Dense index:

wiv] [RT=][=T=
s(a| |s|e]]e|=

o]]
[]

48

Primary Index with
Duplicate Keys

38Sparse index: pointer to lowest search key
in each block:

20
30

49

Primary Index with
Duplicate Keys

38 Better: pointer to lowest new search key
in each block:

¥Search for 20

- o]]
20 10 _

Secondary Indexes

#To index other attributes than primary key
¥Always dense (why ?)

Clustered/Unclustered

#Primary indexes = usually clustered
¥Secondary indexes = usually unclustered

Clustered vs. Unclustered
Index

Data entries

Dataentries
(ndex Filey

AbBooot U AOhSESD

Data Records Data Records

CLUSTERED UNCLUSTERED

Secondary Indexes

3 Applications:
Rlindex other attributes than primary key
Hlindex unsorted files (heap files)
Hlindex clustered data

Applications of Secondary
Indexes

Composite Search Keys

38 Composite Search Keys: Search on
a combination of fields.

& Equality query: Every field
value is equal to a constant
value. E.g. wrt <sal,age>
index:

Xlage=20 and sal =75

BIRange query: Some field value
is not a constant. E.g.:

Xlage =20; or age=20 and
sal > 10

Examples of composite key

indexes using lexicographic order.

[1180\ 11
11210 % 12
12.20 nameage sal 12
1375 bob 12 10 h
<age, sal> cal 11 80 <age>
— joe 12 20
1012 ue 13 75 10
(20124 Data records 0
sorted by name 75
80,11 80
<sal, age> <sal>

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

3 Clustered data
Company(name, city), Product(pid, maker)
Select city Select pid
From Company, Product From Company, Product
Where name=maker Where name=maker
and pid="p045" and city="Seattle"
Products of company 1 Products of company 2 Products of company 3
e —A —
Company 1 Company 2 Company 3 U
55
B+ Trees

3¥Search trees

¥lIdeain B Trees:
BImake 1 node = 1 block

3Idea in B+ Trees:

Make leaves into a linked list (range queries
are easier)

B+ Trees Basics

¥Parameter d = the degree
38Each node has >= d and <= 2d keys

(except root) |- ‘ 12‘0‘ o
|

A

Keysk <30

—

Keys30<=k<120 Keys 120<=k<240

¥ Each leaf has

/

Keys 240<=k

B+ Tree Example

10]15] 18 20‘30‘40‘50'60‘65‘ |BO‘85‘90‘

aiwi LL&.M ; 4

B+ Tree Design

¥How large d ?
F¥Example:
RKey size = 4 bytes
&IPointer size = 8 bytes

&IBlock size = 4096 byes
#¥2d x4 + (2d+1)x8 <= 4096

¥d =170

10

