
1

Introduction to Database
Systems

CSE 444

Lecture #12
Feb 14 2001

2

Announcements

aHW#2 due today
aMidTerm will be returned next Wed

3

Nonquiescent
Checkpointing

aStop accepting any new update/commit/abort
`Make a list of all dirty pages in the buffer
`Write a <START CKPT(T1,…,Tk)>

where T1,…,Tk are all active transactions
aStart normal operation
`Flush unpinned dirty pages as a low-priority item

aWhen all of T1,…,Tk have completed, and their
dirty pages written out
`write <END CKPT>
`Cannot start a <START CKPT…> until earlier <END

CKPT> is complete
4

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<START CKPT>

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T6

later transactions

Q: What if no
<End CKPT> in
the log?

5

Redo Logging

Log records
a<START T> = transaction T has begun
a<COMMIT T> = T has committed
a<ABORT T>= T has aborted
a<T,X,v>= T has updated element X, and

its new value is v

6

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to log
before X is written (flushed) to disk

Lazy write to disk – may need to “redo”
work during recovery

2

7

1616161616OUTPUT(B)

816161616OUTPUT(A)

<COMMIT T>

<START T>

<T,B,16>

<T,A,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888REAT(A,t)

Disk AMem BMem ATAction

8

Recovery with Redo Log

After system’s crash, run recovery manager
aStep 1. Decide for each transaction T

whether it is completed or not
`<START T>….<COMMIT T>…. = yes
`<START T>….<ABORT T>……. = yes
`<START T>……………………… = no

aStep 2. Read log from the beginning, redo
all updates of committed transactions

9

Recovery using Redo Log

aFor committed transactions
`Replay Write() for the log record <T,X,v>

aFor each incomplete transaction T
`Write <Abort T> to log

aFollow Example 8.8

10

Example: Recovery with
Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

11

Nonquiescent
Checkpointing

aWrite a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions
aFlush to disk all blocks of committed

transactions (dirty blocks), while
continuing normal operation
aWhen all blocks have been written, write

<END CKPT>

12

Redo Recovery with
Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from there,
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are
known to be on disk

3

13

Comparison Undo/Redo

aUndo logging:
`OUTPUT must be done early
`If <COMMIT T> is seen, T definitely has

written all its data to disk

aRedo logging
`OUTPUT must be done late
`If <COMMIT T> is not seen, T definitely has

not written any of its data to disk

14

Undo/Redo Logging

aLog Record: <T,X,u,v>= T has updated
element X, its old value was u, and its
new value is v
aRule: If T modifies X, then the log record

<T,X,u,v> must be written to disk before
X is written to disk

15

1616161616OUTPUT(B)

<COMMIT T>

816161616OUTPUT(A)

<START T>

<T,B,8,16>

<T,A,8,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888REAT(A,t)

Disk AMem BMem ATAction

16

Recovery with Undo/Redo
Log

After system’s crash, run recovery manager
aRedo all committed transaction beginning at last

checkpoint
aUndo all uncommitted transactions, until last

checkpoint

17

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

18

Media Failure

aRedundancy is the key
`Shadowed Disk/RAID either for database or

at least for the log
`Cannot afford to lose part of a log!
⌧Only place which has before-image (after-image)

of uncommitted data written (not written) to disk

`Minimize shared hardware

aUsing Archive

4

19

Archive: Fuzzy Dump

a<Begin Dump>
a<Start Ckpt (T1, T2)>
a<T1, A, 1, 5>
a<T2, C, 3, 6>
a<T1, B, 2, 7>
a<Commit T2>
a<End Ckpt>
a<End Dump>

20

Archive: Pragmatics

aUsually a separate media recovery log
aDisk Contention
`Media Log Archiver read from the head
`Log is apepnd-only

aUse two pairs of shadowed log disks
aAvoid keeping undo information in media

recovery log
`Archive only when their entire content is committed
`Use write-lock on pages

21

Summary

aCheckpointing: A quick way to limit the amount
of log to scan on recovery.

aRecovery works in 3 phases:
`Analysis: Forward from checkpoint.
`Redo: Forward from checkpoint.
`Undo: Backward until checkpoint

aTolerating media Failure requires more
redundancy

aMany more optimizations in real system

Storage

Reading: Chapter 3, 4

Memory Hierarchy

aTypical storage hierarchy:
`Main memory (RAM) for currently used data.
`Disk for the main database (secondary storage).
`Tapes for archiving older versions of the data (tertiary

storage).
aThis has major implications for DBMS design!
`READ: transfer data from disk to main memory (RAM).
`WRITE: transfer data from RAM to disk.
`Both are high-cost operations, relative to in-memory

operations, so must be planned carefully!

Disks

aSecondary storage device of choice.
aMain advantage over tapes: random access

vs. sequential.
aData is stored and retrieved in units called

disk blocks or pages.
aUnlike RAM, time to retrieve a disk page

varies depending upon location on disk.
`Therefore, relative placement of pages on disk

has major impact on DBMS performance!

5

Components of a Disk

Platters

The platters spin (say, 100rps).

Spindle

The arm assembly is moved
in or out to position a head
on a desired track. Tracks
under heads make a
cylinder (imaginary!).

Disk head

Arm movement

Arm assembly

Only one head
reads/writes at any
one time.

Tracks

Sector

� Block size is a multiple
of sector size (which is fixed).

Accessing a Disk Page

aTime to access (read/write) a disk block:
`seek time (moving arms to position disk head on track)
`rotational delay (waiting for block to rotate under head)
⌧often called “rotational latency”

`transfer time (actually moving data to/from disk surface)
aSeek time and rotational delay dominate.
`Seek time varies from about 1 to 20msec
`Rotational delay varies from 0 to 10msec
`Transfer rate is about 1msec per 4KB page

aKey to lower I/O cost: reduce seek/rotation
delays! Hardware vs. software solutions?

Arranging Pages on Disk

a`Next’ block concept:
`blocks on same track, followed by
`blocks on same cylinder, followed by
`blocks on adjacent cylinder

aBlocks in a file should be arranged
sequentially on disk (by `next’), to minimize
seek and rotational delay.

aFor a sequential scan, pre-fetching several
pages at a time is a big win!

Disk Space Management

aLowest layer of DBMS software manages space
on disk.

aHigher levels call upon this layer to:
`allocate/de-allocate a page
`read/write a page

aOne such “higher level” is the buffer manager,
which receives a request to bring a page into
memory and then, if needed, requests the disk
space layer to read the page into the buffer
pool.

Buffer Management in a
DBMS

a\Table of <frame#, pageid> pairs is
maintained.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Files of Records

aPage or block is OK when doing I/O, but higher
levels of DBMS operate on records, and files of
records.

a FILE: A collection of pages, each containing a
collection of records. Must support:
`insert/delete/modify record
`read a particular record (specified using record id)
`scan all records (possibly with some conditions on

the records to be retrieved)

6

Record Formats: Fixed
Length

aInformation about field types same for all
records in a file; stored in system catalogs.

aFinding i’th field requires scan of record.
aNote the importance of schema

information!

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Record Header

L1 L2 L3 L4

F1 F2 F3 F4

To schema

length

timestamp

Need the header because:
•The schema may change

for a while new+old may coexist
•Records from different relations may coexist

header

Variable Length Records

L1 L2 L3 L4

F1 F2 F3 F4

Other header information

length

Place the fixed fields first: F1, F2
Then the variable length fields: F3, F4
Null values take 2 bytes only
Sometimes they take 0 bytes (when at the end)

header

34

Storing Records in Blocks

aBlocks have fixed size (typically 4k)

R1R2R3

BLOCK

R4

35

Spanning Records Across
Blocks

aWhen records are very large
aOr even medium size: saves space in blocks

block
header

block
header

R1 R2 R2 R3

36

Modifications: Insertion

aFile is unsorted: add it to the end (easy
☺)
aFile is sorted:
`Is there space in the right block ?
⌧Yes: we are lucky, store it there

`Is there space in a neighboring block ?
⌧Look 1-2 blocks to the left/right, shift records

`If anything else fails, create overflow block

7

37

Overflow Blocks

aAfter a while the file starts being dominated by
overflow blocks: time to reorganize

Blockn-1 Blockn Blockn+1

Overflow

38

Modifications: Deletions

aFree space in block, shift records
aMaybe be able to eliminate an overflow

block
aCan never really eliminate the record,

because others may point to it
`Place a tombstone instead (a NULL record)

39

Modifications: Updates

aIf new record is shorter than previous,
easy ☺
aIf it is longer, need to shift records,

create overflow blocks

40

Physical Addresses

aEach block and each record have a physical
address that consists of:
`The host
`The disk
`The cylinder number
`The track number
`The block within the track
`For records: an offset in the block
⌧sometimes this is in the block’s header

41

Logical Addresses

aLogical address: a string of bytes (10-16)
aMore flexible: can blocks/records around
aBut need translation table:

P3L3
P2L2
P1L1

Physical addressLogical address

42

Main Memory Address

aWhen the block is read in main memory,
it receives a main memory address
aNeed another translation table

L3M3
L2M2
L1M1

Logical addressMemory address

8

43

Optimization: Pointer
Swizzling

a= the process of replacing a
physical/logical pointer with a main
memory pointer
aStill need translation table, but

subsequent references are faster

Indexes
aAn index on a file speeds up selections on the

search key fields for the index.
`Any subset of the fields of a relation can be the

search key for an index on the relation.
`Search key is not the same as key (minimal set of

fields that uniquely identify a record in a relation).

aAn index contains a collection of data entries,
and supports efficient retrieval of all data
entries with a given key value k.

45

Index Classification

aPrimary/secondary
aClustered/unclustered
aDense/sparse
aB+ tree / Hash table / …

46

Primary Index

aFile is sorted on the index attribute
aDense index: sequence of (key,pointer)

pairs

40

30

20

10

80

70

60

50

20

10

40

30

60

50

80

70

47

Primary Index

aSparse index

70

50

30

10

150

130

110

90

20

10

40

30

60

50

80

70

48

Primary Index with
Duplicate Keys

aDense index:

40

30

20

10

80

70

60

50

10

10

20

10

20

20

40

30

9

49

Primary Index with
Duplicate Keys

aSparse index: pointer to lowest search key
in each block:

aSearch for 20

30

20

10

10

10

10

20

10

20

20

40

30

50

Primary Index with
Duplicate Keys

aBetter: pointer to lowest new search key
in each block:
aSearch for 20

40

30

20

10

80

70

60

50

10

10

20

10

30

30

50

40

51

Secondary Indexes

aTo index other attributes than primary key
aAlways dense (why ?)

20

20

10

10

30

30

30

20

30

20

20

30

20

10

30

10

52

Clustered/Unclustered

aPrimary indexes = usually clustered
aSecondary indexes = usually unclustered

Clustered vs. Unclustered
Index

Data entries
(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

54

Secondary Indexes

aApplications:
`index other attributes than primary key
`index unsorted files (heap files)
`index clustered data

10

55

Applications of Secondary
Indexes
aClustered data

Company(name, city), Product(pid, maker)
Select city
From Company, Product
Where name=maker

and pid=“p045”

Select pid
From Company, Product
Where name=maker

and city=“Seattle”

Company 1 Company 2 Company 3

Products of company 1 Products of company 2 Products of company 3

Composite Search Keys
a Composite Search Keys: Search on

a combination of fields.
`Equality query: Every field

value is equal to a constant
value. E.g. wrt <sal,age>
index:
⌧age=20 and sal =75

`Range query: Some field value
is not a constant. E.g.:
⌧age =20; or age=20 and

sal > 10

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

57

B+ Trees

aSearch trees
aIdea in B Trees:
`make 1 node = 1 block

aIdea in B+ Trees:
`Make leaves into a linked list (range queries

are easier)

58

aParameter d = the degree
aEach node has >= d and <= 2d keys

(except root)

aEach leaf has >=d and <= 2d keys:

B+ Trees Basics

24012030

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

605040

40 50 60

Next leaf

59

B+ Tree Example

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

d = 2

60

B+ Tree Design

aHow large d ?
aExample:
`Key size = 4 bytes
`Pointer size = 8 bytes
`Block size = 4096 byes

a2d x 4 + (2d+1) x 8 <= 4096
ad = 170

